Files
emuz80go/ddcb_opcodes.go

173 lines
4.1 KiB
Go

// Package z80 implements a Z80 CPU emulator with support for all documented
// and undocumented opcodes, flags, and registers.
package z80
// ExecuteDDCBOpcode executes a DD CB prefixed opcode
// This is handled in dd_opcodes.go in the executeDDCBOpcode function
// This file exists to satisfy the requirement of separating opcodes by prefix
// executeDDCBOpcode executes a DD CB prefixed opcode
func (cpu *CPU) executeDDCBOpcode() int {
// For DD CB prefixed instructions, R should be incremented by 2 total
// We've already incremented R once for the DD prefix and once for the CB prefix
// So we need to adjust by -1 to get the correct total increment of 2
originalR := cpu.R
displacement := cpu.ReadDisplacement()
opcode := cpu.ReadOpcode()
// Adjust R register - DD CB instructions should increment R by 2 total
// We've already incremented twice (DD and CB), so we need to subtract 1
// to get the correct total of 2 increments
cpu.R = originalR
addr := uint16(int32(cpu.IX) + int32(displacement))
value := cpu.Memory.ReadByte(addr)
// Handle rotate and shift instructions (0x00-0x3F)
if opcode <= 0x3F {
return cpu.executeRotateShiftIndexed(opcode, addr, value)
}
// Handle bit test instructions (0x40-0x7F)
if opcode >= 0x40 && opcode <= 0x7F {
bitNum := uint((opcode >> 3) & 0x07)
cpu.bitMem(bitNum, value, byte(addr>>8))
cpu.MEMPTR = addr
return 20
}
// Handle reset bit instructions (0x80-0xBF)
if opcode >= 0x80 && opcode <= 0xBF {
return cpu.executeResetBitIndexed(opcode, addr, value)
}
// Handle set bit instructions (0xC0-0xFF)
if opcode >= 0xC0 {
return cpu.executeSetBitIndexed(opcode, addr, value)
}
// Unimplemented opcode
return 23
}
// executeRotateShiftIndexed handles rotate and shift instructions for indexed addressing
func (cpu *CPU) executeRotateShiftIndexed(opcode byte, addr uint16, value byte) int {
// Determine operation type from opcode bits 3-5
opType := (opcode >> 3) & 0x07
// Determine register from opcode bits 0-2
reg := opcode & 0x07
// Perform the operation
var result byte
switch opType {
case 0: // RLC
result = cpu.rlc(value)
case 1: // RRC
result = cpu.rrc(value)
case 2: // RL
result = cpu.rl(value)
case 3: // RR
result = cpu.rr(value)
case 4: // SLA
result = cpu.sla(value)
case 5: // SRA
result = cpu.sra(value)
case 6: // SLL (Undocumented)
result = cpu.sll(value)
case 7: // SRL
result = cpu.srl(value)
default:
result = value
}
// Store result in memory
cpu.Memory.WriteByte(addr, result)
// Store result in register if needed (except for (HL) case)
if reg != 6 { // reg 6 is (HL) - no register store needed
switch reg {
case 0:
cpu.B = result
case 1:
cpu.C = result
case 2:
cpu.D = result
case 3:
cpu.E = result
case 4:
cpu.H = result
case 5:
cpu.L = result
case 7:
cpu.A = result
}
}
cpu.MEMPTR = addr
return 23
}
// executeResetBitIndexed handles reset bit instructions for indexed addressing
func (cpu *CPU) executeResetBitIndexed(opcode byte, addr uint16, value byte) int {
bitNum := uint((opcode >> 3) & 0x07)
reg := opcode & 0x07
result := cpu.res(bitNum, value)
cpu.Memory.WriteByte(addr, result)
// Store result in register if needed (except for (HL) case)
if reg != 6 { // reg 6 is (HL) - no register store needed
switch reg {
case 0:
cpu.B = result
case 1:
cpu.C = result
case 2:
cpu.D = result
case 3:
cpu.E = result
case 4:
cpu.H = result
case 5:
cpu.L = result
case 7:
cpu.A = result
}
}
cpu.MEMPTR = addr
return 23
}
// executeSetBitIndexed handles set bit instructions for indexed addressing
func (cpu *CPU) executeSetBitIndexed(opcode byte, addr uint16, value byte) int {
bitNum := uint((opcode >> 3) & 0x07)
reg := opcode & 0x07
result := cpu.set(bitNum, value)
cpu.Memory.WriteByte(addr, result)
// Store result in register if needed (except for (HL) case)
if reg != 6 { // reg 6 is (HL) - no register store needed
switch reg {
case 0:
cpu.B = result
case 1:
cpu.C = result
case 2:
cpu.D = result
case 3:
cpu.E = result
case 4:
cpu.H = result
case 5:
cpu.L = result
case 7:
cpu.A = result
}
}
cpu.MEMPTR = addr
return 23
}